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The Reciprocal Lattice 
 
Two types of lattice are of a great importance: 
 

1. Reciprocal lattice 
2. Direct lattice (which is the Bravais lattice that determines a 

given reciprocal lattice). 
 

What is a reciprocal lattice? 
A reciprocal lattice is regarded as a geometrical abstraction. It is 
essentially identical to a "wave vector" k-space. 
 
Definition: 

Since we know that R


 may construct a set of points of a Bravais 
lattice, thus a reciprocal lattice can be defined as: 

- The collection of all wave vectors that yield plane waves with 

a period of the Bravais lattice.[Note: any R


vector is a 
possible period of the Bravais lattice] 

- A collection of vectors G


satisfying 1RGie


or nRG 2


, 

where n is an integer and is defined as: 332211 nknknk  . 

HereG


, is a reciprocal lattice vector which can be defined 

as: 332211 bkbkbkG


 , where k1, k2 and k3 are integers. 

[Note: In some text books you may find that KG


 ]. 

- The reciprocal lattice vector G


 which generates the 
reciprocal lattice is constructed from the linear combination 

of the primitive vectors 21,bb


, and 3b


, where 
cellV

aa
b 32

1 2

 
   

and 2b


 and 3b


 can be obtained from cyclic permutation of 1 2 

3. 
 
Notes: 

1. Since nRG 2


, this implies that ijji ab 2


, where 

1ij if i=j and 0ij if ij. 

2. The two lattices (reciprocal and direct) are related by the 
above definitions in 1. 

3. Rotating a crystal means rotating both the direct and 
reciprocal lattices. 



R. I. Badran  Solid State Physics 

 41 

4. The direct crystal lattice has the dimension of [L] while the 
reciprocal lattice has the dimension of [L-1]. 

 
Why do we need a reciprocal lattice? 
Reciprocal lattice provides a simple geometrical basis for 
understanding: 

a) All things of "wave nature" (like behavior of electron and 
lattice vibrations in crystals. 

b) The geometry of x-ray and electron diffraction patterns. 
 
Reciprocal lattice to simple cubic (sc) lattice: 

 
The simple cubic primitive lattice, which has the primitive 

vectors xaa ˆ
1 


, yaa ˆ
2 


 and zaa ˆ
3 


, has a volume of cell equal 

to
3aVcell  . 

The corresponding primitive vectors in the reciprocal lattice can be 
obtained as: 
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The corresponding volume in reciprocal lattice is
cellVa

3
3 )2(

)
2

(


 .  

It must be noted that the reciprocal lattice of a sc is also a sc but 

with lattice constant of )
2

(
a


. 

 
Reciprocal lattice to bcc lattice: 
 
When a set of primitive vectors for the bcc  lattice are given by 

xaa ˆ
1 


, yaa ˆ
2 


and )ˆˆˆ(
2

3 zyx
a

a 


, as shown in figure 11, 

where a is the side of the conventional cell, the primitive lattice 
vectors of the reciprocal lattice are found as: 
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You can easily show that the volume of primitive reciprocal lattice 

is
3)

2
(2

a


. This can be compared to the volume of primitive direct 

lattice
2

3a
Vcell  . 

 
Notes:  

a) The bcc primitive lattice vectors in the reciprocal lattice are 
just the primitive vectors of an fcc lattice.  

b) The general reciprocal lattice vector 332211 bkbkbkG


 has 

a special expression for bcc primitive reciprocal lattice 

as: ]ˆ)(ˆ)(ˆ)[(
2

213132 zkkykkxkk
a

G 


. 

 
Reciprocal lattice to fcc lattice: 
 

We know that the primitive vectors of fcc primitive lattice may 

be defined by: )ˆˆ(
2

1 zy
a

a 


, )ˆˆ(
2

2 zx
a

a 


 and )ˆˆ(
2

3 xy
a

a 


, 

[see figure 10]. Thus the primitive vectors in the reciprocal 

lattice are:  

)ˆˆˆ)(
2

(1 zyx
a

b 


, )ˆˆˆ)(
2

(2 zyx
a

b 


 and )ˆˆˆ)(
2

(3 zyx
a

b 


. 

It must be noted that these latter vectors are the primitive 

lattice vectors of a bcc lattice. 
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The volume of the primitive cell of the reciprocal lattice 

is
3)

2
(4

a


. [Try to findG


for the fcc primitive reciprocal lattice, for 

example, when k1=1, k2= -2 and k3 =3]. 

Reciprocal lattice to simple hexagonal lattice: 

Recalling the primitive vectors of a simple hexagonal xaa ˆ
1 


, 

)ˆ3ˆ(
2

2 yx
a

a 


and zca ˆ
3 


, as shown in figure 15. 

The corresponding primitive vectors can simply be determined 

by using: 
cellV

aa
b 32

1 2

 
  , 

cellV

aa
b 13

2 2

 
   and

cellV

aa
b 21

3 2

 
  . 

The volume of primitive cell for the direct lattice is caVcell
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Using a common origin for both reciprocal and direct lattices, 

we can build up the primitive reciprocal lattice by determining 

the magnitudes of )ˆ
3

1
ˆ)(

2
(1 yx

a
b 


and )ˆ

3

2
)(

2
(2 y

a
b





and 

the angle between them. This will give you a clue how the 

base of the new reciprocal lattice looks like. Thus both vectors 
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have the magnitude of )
3

4
(21

a
bb





. Obviously the 

magnitude of the third vector is )
2

(3
c

b





. These can be 

compared to the magnitudes of the primitive vectors, aa 1


, 

aa 2


and ca 3


, respectively, as shown in figures 27 and 

28). The angle between the two vectors 1b


and 2b


 can be 

directly obtained as






120)(cos

21

211 


 

bb

bb
 .  

Now what is left is to determine the angle between the vectors 

1a


and 1b


which is obtained by applying the relation 

ijji ab 2


 and it is (/6). This implies the necessity to 

rotate the plane of the two reciprocal vectors 1b


and 2b


 by /6. 

(See  figure 27).  

 

 

Figure 27: The primitive vectors of base of simple 
hexagonal conventional cell in direct space lattice as 
compared to their corresponding vectors in reciprocal 
space lattice. 
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Conclusion: 

This shows that the reciprocal lattice to a simple hexagonal 

lattice with lattice constant a and c is also another simple 

hexagonal lattice, with lattice constants 
a3

4
and

c

2
, but 

rotated through /6 about the c-axis with respect to the direct 

lattice (in a clockwise direction). [See problem 5.2.a in Solid 

State Physics by N. Ashcroft & N. Mermin]. 

Figure 28: The three primitive vectors of simple 
hexagonal conventional cell in direct space lattice 
as compared to their corresponding vectors in 
reciprocal space lattice. 
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