The Reciprocal Lattice

Two types of lattice are of a great importance:

1. Reciprocal lattice
2. Direct lattice (which is the Bravais lattice that determines a given reciprocal lattice).

What is a reciprocal lattice?

A reciprocal lattice is regarded as a geometrical abstraction. It is essentially identical to a "wave vector" k-space.

Definition:

Since we know that \vec{R} may construct a set of points of a Bravais lattice, thus a reciprocal lattice can be defined as:

- The collection of all wave vectors that yield plane waves with a period of the Bravais lattice.[Note: any \vec{R} vector is a possible period of the Bravais lattice]
- A collection of vectors \vec{G} satisfying $e^{i \vec{G} \bullet \vec{R}}=1 \operatorname{or} \vec{G} \bullet \vec{R}=2 \pi n$, where n is an integer and is defined as: $k_{1} n_{1}+k_{2} n_{2}+k_{3} n_{3}$. Here \vec{G}, is a reciprocal lattice vector which can be defined as: $\vec{G}=k_{1} \vec{b}_{1}+k_{2} \vec{b}_{2}+k_{3} \vec{b}_{3}$, where k_{1}, k_{2} and k_{3} are integers. [Note: In some text books you may find that $\vec{G}=\vec{K}$].
- The reciprocal lattice vector \vec{G} which generates the reciprocal lattice is constructed from the linear combination of the primitive vectors \vec{b}_{1}, \vec{b}_{2}, and \vec{b}_{3}, where $\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{V_{\text {cell }}}$ and \vec{b}_{2} and \vec{b}_{3} can be obtained from cyclic permutation of 12 3.

Notes:

1. Since $\vec{G} \bullet \vec{R}=2 \pi n$, this implies that $\vec{b}_{i} \bullet \vec{a}_{j}=2 \pi \delta_{i j}$, where $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$.
2. The two lattices (reciprocal and direct) are related by the above definitions in 1.
3. Rotating a crystal means rotating both the direct and reciprocal lattices.
4. The direct crystal lattice has the dimension of [L] while the reciprocal lattice has the dimension of $\left[L^{-1}\right]$.

Why do we need a reciprocal lattice?

Reciprocal lattice provides a simple geometrical basis for understanding:
a) All things of "wave nature" (like behavior of electron and lattice vibrations in crystals.
b) The geometry of x-ray and electron diffraction patterns.

Reciprocal lattice to simple cubic ($s c$) lattice:

The simple cubic primitive lattice, which has the primitive vectors $\vec{a}_{1}=a \hat{x}, \vec{a}_{2}=a \hat{y}$ and $\vec{a}_{3}=a \hat{z}$, has a volume of cell equal to $V_{\text {cell }}=a^{3}$.
The corresponding primitive vectors in the reciprocal lattice can be obtained as:

$$
\begin{array}{ll}
\vec{b}_{1}=2 \pi \frac{a^{2}(\hat{y} \times \hat{z})}{a^{3}} & \Rightarrow \vec{b}_{1}=\left(\frac{2 \pi}{a}\right) \hat{x}, \\
\vec{b}_{2}=2 \pi \frac{a^{2}(\hat{z} \times \hat{x})}{a^{3}} & \Rightarrow \vec{b}_{2}=\left(\frac{2 \pi}{a}\right) \hat{y} \text { and } \\
\vec{b}_{3}=2 \pi \frac{a^{2}(\hat{x} \times \hat{y})}{a^{3}} & \Rightarrow \vec{b}_{3}=\left(\frac{2 \pi}{a}\right) \hat{z} .
\end{array}
$$

The corresponding volume in reciprocal lattice is $\left(\frac{2 \pi}{a}\right)^{3}=\frac{(2 \pi)^{3}}{V_{\text {cell }}}$.
It must be noted that the reciprocal lattice of a $s c$ is also a $s c$ but with lattice constant of $\left(\frac{2 \pi}{a}\right)$.

Reciprocal lattice to bcc lattice:

When a set of primitive vectors for the $b c c$ lattice are given by $\vec{a}_{1}=a \hat{x}, \vec{a}_{2}=a \hat{y}$ and $\vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y}+\hat{z})$, as shown in figure 11 , where a is the side of the conventional cell, the primitive lattice vectors of the reciprocal lattice are found as:

$$
\begin{array}{ll}
\vec{b}_{1}=2 \pi \frac{\left[\frac{a^{2}}{2}(\hat{y}) \times(\hat{x}+\hat{y}+\hat{z})\right]}{\frac{a^{3}}{2}} & \Rightarrow \vec{b}_{1}=\left(\frac{2 \pi}{a}\right)(\hat{x}-\hat{z}), \\
\vec{b}_{2}=2 \pi \frac{\left[\frac{a^{2}}{2}(\hat{x}+\hat{y}+\hat{z}) \times(\hat{x})\right]}{\frac{a^{3}}{2}} & \Rightarrow \vec{b}_{2}=\left(\frac{2 \pi}{a}\right)(\hat{y}-\hat{z}), \\
\vec{b}_{3}=2 \pi \frac{\left[a^{2}(\hat{x} \times \hat{y})\right]}{\frac{a^{3}}{2}} & \Rightarrow \vec{b}_{3}=\left(\frac{2 \pi}{a}\right)(2 \hat{z}) .
\end{array}
$$

You can easily show that the volume of primitive reciprocal lattice is $2\left(\frac{2 \pi}{a}\right)^{3}$. This can be compared to the volume of primitive direct lattice $V_{\text {cell }}=\frac{a^{3}}{2}$.

Notes:

a) The $b c c$ primitive lattice vectors in the reciprocal lattice are just the primitive vectors of an fcc lattice.
b) The general reciprocal lattice vector $\vec{G}=k_{1} \vec{b}_{1}+k_{2} \vec{b}_{2}+k_{3} \vec{b}_{3}$ has a special expression for bcc primitive reciprocal lattice as: $\vec{G}=\frac{2 \pi}{a}\left[\left(k_{2}+k_{3}\right) \hat{x}+\left(k_{1}+k_{3}\right) \hat{y}+\left(k_{1}+k_{2}\right) \hat{z}\right]$.

Reciprocal lattice to fcc lattice:

We know that the primitive vectors of $f c c$ primitive lattice may be defined by: $\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{x}+\hat{z})$ and $\vec{a}_{3}=\frac{a}{2}(\hat{y}+\hat{x})$, [see figure 10]. Thus the primitive vectors in the reciprocal lattice are:
$\vec{b}_{1}=\left(\frac{2 \pi}{a}\right)(-\hat{x}+\hat{y}+\hat{z}), \vec{b}_{2}=\left(\frac{2 \pi}{a}\right)(\hat{x}-\hat{y}+\hat{z})$ and $\vec{b}_{3}=\left(\frac{2 \pi}{a}\right)(\hat{x}+\hat{y}-\hat{z})$.
It must be noted that these latter vectors are the primitive lattice vectors of a bcc lattice.

The volume of the primitive cell of the reciprocal lattice is $4\left(\frac{2 \pi}{a}\right)^{3}$. [Try to find \vec{G} for the $f c c$ primitive reciprocal lattice, for example, when $k_{1}=1, k_{2}=-2$ and $\left.k_{3}=3\right]$.

Reciprocal lattice to simple hexagonal lattice:

Recalling the primitive vectors of a simple hexagonal $\vec{a}_{1}=a \hat{x}$, $\vec{a}_{2}=\frac{a}{2}(\hat{x}+\sqrt{3} \hat{y})$ and $\vec{a}_{3}=c \hat{z}$, as shown in figure 15.

The corresponding primitive vectors can simply be determined by using: $\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{V_{\text {cell }}}, \vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{V_{\text {cell }}}$ and $\vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{V_{\text {cell }}}$. The volume of primitive cell for the direct lattice is $V_{\text {cell }}=\frac{\sqrt{3}}{2} a^{2} c$.

$$
\begin{array}{ll}
\vec{b}_{1}=2 \pi \frac{\frac{a}{2}(\hat{x}+\sqrt{3} \hat{y}) \times c \hat{z}}{\frac{\sqrt{3}}{2} a^{2} c} & \Rightarrow \vec{b}_{1}=\left(\frac{2 \pi}{a}\right)\left(\hat{x}-\frac{1}{\sqrt{3}} \hat{y}\right), \\
\vec{b}_{2}=2 \pi \frac{c \hat{z} \times a \hat{x}}{\frac{\sqrt{3}}{2} a^{2} c} & \Rightarrow \vec{b}_{2}=\left(\frac{2 \pi}{a}\right)\left(\frac{2}{\sqrt{3}} \hat{y}\right) \text { and } \\
\vec{b}_{3}=2 \pi \frac{a \hat{x} \times \frac{a}{2}(\hat{x}+\sqrt{3} \hat{y})}{\frac{\sqrt{3}}{2} a^{2} c} & \Rightarrow \vec{b}_{3}=\left(\frac{2 \pi}{c}\right) \hat{z} .
\end{array}
$$

Using a common origin for both reciprocal and direct lattices, we can build up the primitive reciprocal lattice by determining the magnitudes of $\vec{b}_{1}=\left(\frac{2 \pi}{a}\right)\left(\hat{x}-\frac{1}{\sqrt{3}} \hat{y}\right)$ and $\vec{b}_{2}=\left(\frac{2 \pi}{a}\right)\left(\frac{2}{\sqrt{3}} \hat{y}\right)$ and the angle between them. This will give you a clue how the base of the new reciprocal lattice looks like. Thus both vectors
have the magnitude of $\left|\vec{b}_{1}\right|=\left|\vec{b}_{2}\right|=\left(\frac{4 \pi}{\sqrt{3} a}\right)$. Obviously the magnitude of the third vector is $\left|\vec{b}_{3}\right|=\left(\frac{2 \pi}{c}\right)$. These can be compared to the magnitudes of the primitive vectors, $\left|\vec{a}_{1}\right|=a$, $\left|\vec{a}_{2}\right|=a$ and $\left|\vec{a}_{3}\right|=c$, respectively, as shown in figures 27 and 28). The angle between the two vectors \vec{b}_{1} and \vec{b}_{2} can be directly obtained as $\theta=\cos ^{-1}\left(\frac{\vec{b}_{1} \bullet \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}\right)=120^{\circ}$.

Now what is left is to determine the angle between the vectors \vec{a}_{1} and \vec{b}_{1} which is obtained by applying the relation $\vec{b}_{i} \bullet \vec{a}_{j}=2 \pi \delta_{i j}$ and it is $(\pi / 6)$. This implies the necessity to rotate the plane of the two reciprocal vectors \vec{b}_{1} and \vec{b}_{2} by $\pi / 6$. (See figure 27).

Figure 27: The primitive vectors of base of simple hexagonal conventional cell in direct space lattice as compared to their corresponding vectors in reciprocal space lattice.

Figure 28: The three primitive vectors of simple hexagonal conventional cell in direct space lattice as compared to their corresponding vectors in reciprocal space lattice.

Conclusion:

This shows that the reciprocal lattice to a simple hexagonal lattice with lattice constant a and c is also another simple hexagonal lattice, with lattice constants $\frac{4 \pi}{\sqrt{3} a}$ and $\frac{2 \pi}{c}$, but rotated through $\pi / 6$ about the c-axis with respect to the direct lattice (in a clockwise direction). [See problem 5.2.a in Solid State Physics by N. Ashcroft \& N. Mermin].

